The Allais Paradox and Risk-aversion

Ryan Doody

Risk-aversion

The orthodox theory of rational decision-making is *expected utility theory*, according to which there are two important components of decision-making:

- 1. *Utilities*. How much do you value the various outcomes that might obtain?
- 2. *Probabilities*. How likely do you think a given act is to realize these outcomes?

The value of an act is its *expected utility*, and a rational decision-maker will prefer the act with the highest expected utility.

Many people's preference display risk-aversion in the following sense. Consider a choice between,

- (A) \$50 for sure,
- (B) A fair coin-flip between \$0 and \$100,

Many people prefer (A) to (B). If such a person is an EU maximizer, then u(\$50) - u(\$0) > u(\$100) - u(\$50).

Objection: This conflates two different reasons why one might prefer (A) to (B); local considerations about how valuable one takes one's outcomes to be vs global considerations about how the gamble's outcomes are structured.

The Allais Paradox

Consider the following two lotteries:

- (1_A) a 11% chance of winning \$1,000,000.
- (1_{*B*}) a 10% chance of winning \$5,000,000.

Which do you prefer? _____

Now consider to other lotteries:

- (2_A) a 100% chance of winning \$1,000,000.
- $(\mathbf{2}_B)~$ a 10% chance of winning \$5,000,000, and a 89% chance of winning \$1,000,000.

Which do you prefer? _____

Let $h = \{x_1, E_1; x_2, E_2; \dots, x_n, E_n\}$ be a gamble that yields, for each $1 \le i \le n$, an outcome x_i if event E_i obtains, and is such that $u(x_1) \le u(x_2) \le \dots \le u(x_n)$.

EXPECTED UTILITY

$$EU(h) = \sum_{i=1}^{n} c(E_i) \cdot u(x_i)$$

This problem comes from the French economist Maurice Allais, who raised it as a counterexample to Leonard Savage's *Sure-Thing Principle* (which is one of the central axioms underlying Expected Utility Theory).

Roughly, the principle says: if two gambles agree on what happens if one event obtains ($\neg E$), then your ranking of them should depend only on how you rank what would happen if this event doesn't obtain (*E*).

SURE-THING PRINCIPLE						
		Ε	$\neg E$			
	f	Χ	Ζ			
	g	Y	Ζ			
	f^*	Χ	Z^*			
	g^*	Y	Z^*			

 $f \succ g$ if and only if $f^* \succ g^*$

The Allais Preferences: $1_B \succ 1_A$, $2_A \succ 2_B$.

Question: Can you assign utilities to \$0, \$1,000,000, and \$5,000,000 so that your ranking of the lotteries obey Expected Utility Theory?

It's easier to see how this example works if we represent it in a table.

	The Allais Paradox <i>Tickets</i>				
	1	2–11	12–100		
1_A	\$1,000,000	\$1,000,000	\$0		
1_B	\$0	\$5,000,000	\$0		
2_A	\$1,000,000	\$1,000,000	\$1,000,000		
2_B	\$0	\$5,000,000	\$1,000,000		

There is no way to assign utility values to \$0, \$1,000,000, and \$5,000,000 so that 1_B has higher expected utility than 1_A , and that 2_A has higher expected utility than 2_B .

Therefore, these preferences cannot be represented as maximizing expected utility.

Risk-weighted Expected Utility Theory

According to *Risk-weighted Expected Utility Theory* (REUT), there are three components of rational decision-making:

- 1. *Utilities*. How much do you value the various outcomes that might obtain?
- 2. *Probabilities*. How likely do you think a given act is to realize these outcomes?
- 3. *Risk-function*. To what extent are you generally willing to accept the risk of something worse in exchange for the possibility of something better.

Let $h = \{x_1, E_1; x_2, E_2; \dots x_n, E_n\}$ be a gamble that yields, for each $1 \le i \le n$, an outcome x_i if event E_i obtains, and is such that $u(x_1) \le u(x_2) \le \dots \le u(x_n)$.

RISK-WEIGHTED EXPECTED UTILITY

$$REU(h) = u(x_1) + r\left(\sum_{i=2}^n c(E_i)\right) \cdot (u(x_2) - u(x_1)) + \dots + r(c(E_n)) \cdot (u(x_n) - u(x_{n-1}))$$

Example: Consider the choice between (A) and (B), and let's assume that you value money linearly. And suppose that $r(p) = p^2$.

$$REU(A) = 50$$

$$REU(B) = 0 + r(1/2) \cdot (100 - 0) = (1/2)^2 \cdot (100)$$

$$= (1/4) \cdot (100) = 25$$

If you have the Allais Preferences, the answer is: *No*. Is this, then, a counterexample to Expected Utility Theory?

Is that right? Is there no way to represent these preferences using EUT? If so, are these preferences irrational?

REUT is a *generalization* of EUT: the two views coincide when r(p) = p, for all probabilities p.

The risk function is subject to the following constraints: for all p, $0 \le r(p) \le 1$; r(0) = 0 and r(1) = 1; r is non-decreasing.

So, EUT can be understood as a special case of REUT, which encodes a particular attitude toward risks: it is *risk-neutral*.

Expected Utility. We can rewrite the EU of a gamble, $p \cdot u(x_2) + (1 - p) \cdot u(x_1)$, as follows (where x_1 is worse than x_2):

$$u(x_1) + p \cdot (u(x_2) - u(x_1))$$

That's the minimum value of the gamble $(u(x_1))$ plus the amount you might gain above that minimum $(u(x_2) - u(x_1))$ weighted by the probability of realizing that gain (p).

Risk-weighted Expected Utility. Instead of weighting the potential gains by their probabilities, p, REUT weights these potential gains by *a function* of their probabilities, r(p).