The Allais Paradox and Risk-aversion

Ryan Doody

Risk-aversion

The orthodox theory of rational decision-making is expected utility theory, according to which there are two important components of decision-making:

1. Utilities. How much do you value the various outcomes that might obtain?
2. Probabilities. How likely do you think a given act is to realize these outcomes?

The value of an act is its expected utility, and a rational decision-maker will prefer the act with the highest expected utility.

Many people's preference display risk-aversion in the following sense. Consider a choice between,
(A) $\$ 50$ for sure,
(B) A fair coin-flip between $\$ 0$ and $\$ 100$,

Many people prefer (A) to (B). If such a person is an EU maximizer, then $u(\$ 50)-u(\$ 0)>u(\$ 100)-u(\$ 50)$.

Objection: This conflates two different reasons why one might prefer (A) to (B); local considerations about how valuable one takes one's outcomes to be vs global considerations about how the gamble's outcomes are structured.

The Allais Paradox

Consider the following two lotteries:
$\left(1_{A}\right)$ a 11% chance of winning $\$ 1,000,000$.
$\left(1_{B}\right)$ a 10% chance of winning $\$ 5,000,000$.
Which do you prefer? \qquad
Now consider to other lotteries:
$\left(2_{A}\right)$ a 100% chance of winning $\$ 1,000,000$.
$\left(2_{B}\right)$ a 10% chance of winning $\$ 5,000,000$, and a 89% chance of winning \$1,000,000.

Which do you prefer? \qquad

$$
\begin{aligned}
& \text { Let } h=\left\{x_{1}, E_{1} ; x_{2}, E_{2} ; \ldots x_{n}, E_{n}\right\} \text { be a } \\
& \text { gamble that yields, for each } 1 \leq i \leq n, \\
& \text { an outcome } x_{i} \text { if event } E_{i} \text { obtains, and is } \\
& \text { such that } u\left(x_{1}\right) \leq u\left(x_{2}\right) \leq \cdots \leq u\left(x_{n}\right) . \\
& \text { Expected Utility } \\
& \qquad E U(h)=\sum_{i=1}^{n} c\left(E_{i}\right) \cdot u\left(x_{i}\right)
\end{aligned}
$$

This problem comes from the French economist Maurice Allais, who raised it as a counterexample to Leonard Savage's Sure-Thing Principle (which is one of the central axioms underlying Expected Utility Theory). Roughly, the principle says: if two gambles agree on what happens if one event obtains $(\neg E)$, then your ranking of them should depend only on how you rank what would happen if this event doesn't obtain (E).

Sure-Thing Principle

	E	$\neg E$
f	X	Z
g	Y	Z
f^{*}	X	Z^{*}
g^{*}	Y	Z^{*}

$f \succ g$ if and only if $f^{*} \succ g^{*}$

The Allais Preferences: $1_{B} \succ 1_{A}, 2_{A} \succ 2_{B}$.

Question: Can you assign utilities to $\$ 0, \$ 1,000,000$, and $\$ 5,000,000$ so that your ranking of the lotteries obey Expected Utility Theory?

It's easier to see how this example works if we represent it in a table.

If you have the Allais Preferences, the answer is: No.
Is this, then, a counterexample to Expected Utility Theory?

There is no way to assign utility values to $\$ 0, \$ 1,000,000$, and $\$ 5,000,000$ so that 1_{B} has higher expected utility than 1_{A}, and that 2_{A} has higher expected utility than 2_{B}.

Therefore, these preferences cannot be represented as maximizing expected utility.

Risk-weighted Expected Utility Theory

According to Risk-weighted Expected Utility Theory (REUT), there are three components of rational decision-making:

1. Utilities. How much do you value the various outcomes that might obtain?
2. Probabilities. How likely do you think a given act is to realize these outcomes?
3. Risk-function. To what extent are you generally willing to accept the risk of something worse in exchange for the possibility of something better.

Let $h=\left\{x_{1}, E_{1} ; x_{2}, E_{2} ; \ldots x_{n}, E_{n}\right\}$ be a gamble that yields, for each $1 \leq i \leq n$, an outcome x_{i} if event E_{i} obtains, and is such that $u\left(x_{1}\right) \leq$

REUT is a generalization of EUT: the two views coincide when $r(p)=p$, for all probabilities p.
The risk function is subject to the following constraints: for all $p, 0 \leq$ $r(p) \leq 1 ; r(0)=0$ and $r(1)=1 ; r$ is non-decreasing.
So, EUT can be understood as a special case of REUT, which encodes a particular attitude toward risks: it is risk-neutral.

Is that right? Is there no way to represent these preferences using EUT? If so, are these preferences irrational? $u\left(x_{2}\right) \leq \cdots \leq u\left(x_{n}\right)$.

Risk-Weighted Expected Utility

$$
\operatorname{REU}(h)=u\left(x_{1}\right)+r\left(\sum_{i=2}^{n} c\left(E_{i}\right)\right) \cdot\left(u\left(x_{2}\right)-u\left(x_{1}\right)\right)+\cdots+r\left(c\left(E_{n}\right)\right) \cdot\left(u\left(x_{n}\right)-u\left(x_{n-1}\right)\right)
$$

Example: Consider the choice between (A) and (B), and let's assume that you value money linearly. And suppose that $r(p)=p^{2}$.

$$
\begin{aligned}
\operatorname{REU}(A) & =50 \\
\operatorname{REU}(B) & =0+r(1 / 2) \cdot(100-0)=(1 / 2)^{2} \\
& =(1 / 4) \cdot(100)=25
\end{aligned}
$$

Expected Utility. We can rewrite the EU of a gamble, $p \cdot u\left(x_{2}\right)+(1-p) \cdot u\left(x_{1}\right)$, as follows (where x_{1} is worse than x_{2}):

$$
u\left(x_{1}\right)+p \cdot\left(u\left(x_{2}\right)-u\left(x_{1}\right)\right)
$$

That's the minimum value of the gamble $\left(u\left(x_{1}\right)\right)$ plus the amount you might gain above that minimum $\left(u\left(x_{2}\right)-u\left(x_{1}\right)\right)$ weighted by the probability of realizing that gain (p).

Risk-weighted Expected Utility. Instead of weighting the potential gains by their probabilities, p, REUT weights these potential gains by a function of their probabilities, $r(p)$.

